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Optical Holography

Beam Optical Holography Dennis Gabor (1900-1979)
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Holography was not realized until 1963!
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Atomic Resolution Holography

“Inside Source” Holography
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Faigel and Tegze
Rep. Prog. Phys. 62 (1999) 355-393

In 1986 SzOke extended visible
light holography to x-ray and
electron diffraction experiments.




X-Ray Holography - CoO

Tegze et al., Phys. Rev. Lett. 82,
4847 (1999)
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Inside Source and Detector Geometries
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Ideally would like a high resolution
spherical imaging detector.
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ISG — Observation of K-Lines
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B. Sur et al., Phys. Rev. Lett. 88, 065505 (2002)
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Reconstruction of Simpsonite
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B. Sur et al., Nature 414, 525 (2001)
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Hologram S/N and Real Space
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Courtesy of Marton Markd, Research
Institute for Solid State Physics and
Optics, Hungary
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IDG — Imaging of Pb using Cd

L. Cser et al. Phys. Rev. Lett. 89, 175504 (2002)
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Cser et al. have recently N ' \ -5 !
reconstructed a hologram which locates % -
Pb atoms 4 shells from the origin \ ' N }5
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K-Lines and No H?

Hologram (K-lines) can be formed by any kind of interaction between order
and disorder in the scattering system

Spin incoherence (e.g., hydrogen)
Isotope Incoherence
Nuclei in Interstitial Sites Sur et al., Phys. Rev. B 71, 065505
Oriented Grains or Crystallites in (2005)
Random Relative Locations Random
Atom Movements

hol90{norm) - 0.75*hog@2(norm) X 104 DADP Bragg peaks (+ 3% res.) and K-lines ([2n 0 0],[0 2n 0],[0 0 4n])
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Hydrogenous Materials
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Protein Crystallography — 3D Structure

Diffraction pattern of protein
crystal

Diffractométre

Courtesy of ILL

Protein Crystal
of Factor D

Reconstructed 3D image of
ribosome from diffraction pattern
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1/3 of All Proteins — Only 100 Structures

« Membrane associated proteins are known to
— | constitute approximately one third of all known
proteins.

» Of the ~34,000 3D protein structures, only 100, or
so, are of membrane proteins (Research
' | Collaboratory for Structural Bioinformatics).
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* The primary reason for this scarcity of membrane
LUl | protein structures is that integral proteins are not
easily crystallized by standard techniques, and tend
to aggregate in the course of crystallization from
solution.
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Membrane Protein Structure - High Impact

3D Structure of the Photosynthetic Reaction Center
1988 Nobel Prize Chemistry - J DEISENHOFER, R HUBER & H MICHEL
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Outside the channel the
lons are surrounded by
watar molacules

"
Stopping the protons! 2 &0
It is crucial for a cell's fumction ogy» 1
that the pH difference between y o

its Imside and its outside is kept
constant - |eakage of protons
through the mambrane would be
disastrous. For this reason the
water channel rejects positively
charged lons such as protons,
while water mokecules can worm
their way through without difficulty.

Watar channal

Discovery of Water Channels and 3D Structure of lon Channels
2003 Nobel Prize in Chemistry
R. MacKinnon and P. Agre
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Points of Discussion

Can we realistically reconstruct samples containing multiple incoherent scatterers, i.e. proteins?
There are many “poor quality” protein crystals (i.e., diffract to ~ 10 A-1) suitable for holography.

Can we solve this class of crystals to atomic resolution?

The phase problem for large structures is still a considerable obstacle for crystallographers.
Requires the production of various crystals (i.e., isomorphous replacement).

With holography we can solve the structure from one single crystal and a number of wavelengths.
Can we use the LADI system at ILL to collect complete data in hours instead of days?

Can we put together a working group that will make headway in addressing ONE important problem?

1: Image plate on drum. 2: Drum. 3: Sample holder.
4: Crystal. 5: Transmission belt to drive drum.
Motor is under table. 6: Carrier for reading head
with photomultiplier. 7: He-Ne laser. 8: Mirrors for
bringing the laser light to the reader head. 9:
Reader head with photomultiplier. 10: Encoder for
drum rotation. 11: Cover.
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One Proposed Strategy

e Start with “poorly” crystalline sample i.e. diffracts to ~ 6 A resolution
» Solve structure using X-Ray diffraction

» Carry out Neutron/X-ray holography

» Take the low resolution X-ray structure and fit hologram i.e. calculate
hologram and refinement data

* Result should be atomically resolved structure
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